How app.py is made ?

This is a complete beginner's guide to understanding every single line of the weapon detection system's main application file. The file contains over 1,600 lines of Python code that creates a sophisticated web API for detecting weapons in images and videos.
import os
import cv2
import numpy as np
from flask import Flask, request, jsonify
from flask_cors import CORS
from ultralytics import YOLO
import smtplib
import time
What this does:
os: Operating system interface (file paths, directories)cv2: OpenCV library for computer vision and video processingnumpy: Mathematical operations on arrays (images are arrays)flask: Web framework to create the API serverflask_cors: Enables Cross-Origin Resource Sharing (allows frontend to connect)ultralytics YOLO: The AI model for object detectionsmtplib: Sends email alertstime: Time-related functionstry:
from email.mime.text import MimeText
from email.mime.multipart import MimeMultipart
except ImportError:
from email.message import EmailMessage
MimeText = EmailMessage
MimeMultipart = EmailMessage
What this does: This is error handling for email libraries. Different Python versions have different email modules, so it tries one and falls back to another if the first doesn't exist.
from werkzeug.utils import secure_filename
import tempfile
from datetime import datetime, timedelta
import config
from models import db, DetectionSession, WeaponDetection, VideoClip, AlertHistory, User
from sqlalchemy import func
from flask_migrate import Migrate
from ollama_service import ollama_service
import uuid
What this does:
secure_filename: Makes uploaded filenames safe (removes dangerous characters)tempfile: Creates temporary files for processingdatetime: Handles dates and timesconfig: Our custom configuration filemodels: Our database structure definitionssqlalchemy: Database operationsflask_migrate: Database schema updatesollama_service: AI chatbot functionalityuuid: Creates unique identifiersapp = Flask(__name__)
CORS(app)
What this does:
app.config['SQLALCHEMY_DATABASE_URI'] = config.DATABASE_URL
app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = config.SQLALCHEMY_TRACK_MODIFICATIONS
app.config['SQLALCHEMY_ENGINE_OPTIONS'] = config.SQLALCHEMY_ENGINE_OPTIONS
What this does: Configures the database connection using settings from the config file.
db.init_app(app)
migrate = Migrate(app, db)
What this does:
model = None
saved_clips_dir = None
What this does: Creates global variables that will hold the AI model and the directory for saved video clips.
initialize_app() Functiondef initialize_app():
"""Initialize the Flask application with model and directories."""
global model, saved_clips_dir
What this does:
This function sets up everything the application needs to run. The global keyword means it can modify variables defined outside the function.
try:
model_path = config.MODEL_PATH
if not os.path.exists(model_path):
raise FileNotFoundError(f"Model file not found at {model_path}")
What this does:
import torch
from ultralytics.nn.tasks import DetectionModel
from ultralytics.nn.modules.head import Detect
from ultralytics.nn.modules.conv import Conv
from ultralytics.nn.modules.block import C2f, SPPF
original_load = torch.load
def patched_load(*args, **kwargs):
if 'weights_only' not in kwargs:
kwargs['weights_only'] = False
return original_load(*args, **kwargs)
torch.load = patched_load
model = YOLO(model_path)
torch.load = original_load
What this does: This is a technical workaround for loading the AI model:
saved_clips_dir = config.SAVED_CLIPS_FOLDER
os.makedirs(saved_clips_dir, exist_ok=True)
return True
What this does:
create_database_tables() Functiondef create_database_tables():
"""Create all database tables."""
try:
with app.app_context():
db.create_all()
What this does:
if not User.query.first():
from werkzeug.security import generate_password_hash
admin_user = User(
username='admin',
email='admin@weapondetection.com',
password_hash=generate_password_hash('admin123'),
role='admin'
)
db.session.add(admin_user)
db.session.commit()
What this does:
def is_allowed_file(filename):
"""Check if the uploaded file has an allowed extension."""
if not filename:
return False
return '.' in filename and \
filename.rsplit('.', 1)[1].lower() in config.ALLOWED_EXTENSIONS
What this does:
def is_video_file(filename):
"""Check if the file is a video file."""
if not filename:
return False
return '.' in filename and \
filename.rsplit('.', 1)[1].lower() in config.VIDEO_EXTENSIONS
What this does:
Similar to is_allowed_file() but specifically checks for video file extensions.
send_email_alert() Functiondef send_email_alert(detections, saved_clips=None):
"""Send email alert when weapons are detected."""
try:
if not config.EMAIL_ENABLED:
print("📧 Email alerts disabled in configuration")
return
What this does:
try:
msg = MimeMultipart()
msg['From'] = config.SMTP_USERNAME
msg['To'] = config.ALERT_EMAIL
msg['Subject'] = "WEAPON DETECTION ALERT"
What this does:
body = "SECURITY ALERT: Weapons detected in uploaded media\n\n"
body += "Detection Details:\n"
body += "-" * 40 + "\n"
for detection in detections:
confidence_percent = detection['confidence'] * 100
body += f"• {detection['name']}: {confidence_percent:.1f}% confidence\n"
What this does:
if saved_clips:
body += "\nSaved Video Clips:\n"
body += "-" * 40 + "\n"
for clip in saved_clips:
body += f"• File: {clip['filename']}\n"
body += f" Duration: {clip['duration']:.1f}s\n"
body += f" Confidence: {clip['confidence']:.1f}%\n\n"
What this does:
body += f"\nTimestamp: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n"
body += "Please take immediate action if required."
msg.attach(MimeText(body, 'plain'))
email_text = msg.as_string()
What this does:
with smtplib.SMTP(config.SMTP_SERVER, config.SMTP_PORT) as server:
server.starttls()
server.login(config.SMTP_USERNAME, config.SMTP_PASSWORD)
server.sendmail(config.SMTP_USERNAME, config.ALERT_EMAIL, email_text)
print("Email alert sent successfully")
What this does:
detect_weapons_in_image() Functiondef detect_weapons_in_image(image_path):
"""Detect weapons in a single image."""
try:
results = model(image_path)
detections = []
What this does:
for r in results:
boxes = r.boxes
if boxes is not None:
for box in boxes:
class_id = int(box.cls)
class_name = model.names[class_id]
confidence = float(box.conf)
What this does:
class_id: Numeric ID of the detected object typeclass_name: Human-readable name (e.g., "knife", "gun")confidence: How sure the AI is (0.0 to 1.0)print(f"Detected: {class_name} with confidence: {confidence:.3f}")
if class_name in config.DETECTION_CLASSES and confidence >= config.CONFIDENCE_THRESHOLD:
detections.append({
'name': class_name,
'confidence': confidence
})
print(f"WEAPON ALERT: {class_name} - {confidence*100:.1f}%")
What this does:
detect_weapons_in_video() FunctionThis is the most complex function in the file. It processes video frame by frame to detect weapons.
def detect_weapons_in_video(video_path):
"""Detect weapons in video with immediate alerts for lethal weapons."""
start_time = time.time()
try:
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError("Could not open video file")
What this does:
fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
print(f"📹 Processing video: {fps:.1f} FPS, {total_frames} frames")
What this does:
detections = []
weapon_detected = {}
saved_clips = []
frame_count = 0
alert_sent = False
continuous_detections = {}
What this does: Creates variables to track:
detections: List of all weapons foundweapon_detected: Dictionary of unique weapons and their detailssaved_clips: List of video clips that were savedframe_count: Current frame numberalert_sent: Whether an email alert was already sentcontinuous_detections: Tracks weapons seen across multiple framesdef get_frame_skip_rate(total_frames):
"""Calculate optimal frame skip rate based on video length."""
if total_frames < 300:
return 5
elif total_frames < 900:
return 10
else:
return 15
What this does: This inner function optimizes processing speed:
while True:
ret, frame = cap.read()
if not ret:
break
frame_count += 1
if frame_count % frame_skip_rate != 0:
continue
What this does:
ret is True if frame was read successfullycurrent_time = frame_count / fps
results = model(frame)
current_detections = set()
What this does:
for r in results:
boxes = r.boxes
if boxes is not None:
for box in boxes:
class_id = int(box.cls)
class_name = model.names[class_id]
confidence = float(box.conf)
print(f"Frame {frame_count}: {class_name} - {confidence:.3f}")
What this does: Similar to image detection, but for each frame:
if class_name in config.DETECTION_CLASSES:
print(f"Found weapon class: {class_name} with confidence {confidence:.3f}")
print(f"Confidence threshold: {config.CONFIDENCE_THRESHOLD}")
if confidence >= config.CONFIDENCE_THRESHOLD:
current_detections.add(class_name)
What this does:
if class_name not in weapon_detected or confidence > weapon_detected[class_name]['confidence']:
weapon_detected[class_name] = {
'name': class_name,
'confidence': confidence,
'first_detected_time': current_time,
'frame': frame_count
}
print(f"WEAPON DETECTED: {class_name} - {confidence*100:.1f}%")
What this does:
if not alert_sent:
print(f"Sending immediate alert for {class_name} detection!")
immediate_detections = [{
'name': class_name,
'confidence': confidence
}]
try:
send_email_alert(immediate_detections)
alert_sent = True
except Exception as email_error:
print(f"Email alert failed but continuing detection: {email_error}")
alert_sent = True
What this does:
if confidence >= config.CONTINUOUS_DETECTION_THRESHOLD:
if class_name not in continuous_detections:
continuous_detections[class_name] = {
'start_time': current_time,
'start_frame': frame_count,
'max_confidence': confidence,
'frames': []
}
What this does:
continuous_detections[class_name]['max_confidence'] = max(
continuous_detections[class_name]['max_confidence'],
confidence
)
continuous_detections[class_name]['frames'].append({
'frame': frame_count,
'time': current_time,
'confidence': confidence
})
What this does:
weapons_to_remove = []
for weapon_name, track_info in continuous_detections.items():
detection_duration = current_time - track_info['start_time']
if weapon_name not in current_detections:
if detection_duration >= config.CONTINUOUS_DETECTION_DURATION:
clip_filename = save_video_clip(
video_path,
track_info['start_time'],
current_time,
weapon_name,
track_info['max_confidence']
)
What this does:
save_video_clip() functionsave_video_clip() Functiondef save_video_clip(video_path, start_time, end_time, weapon_name, confidence):
"""Save a video clip of the detected weapon."""
try:
buffer_time = 2.0
clip_start = max(0, start_time - buffer_time)
clip_end = end_time + buffer_time
What this does:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
confidence_str = f"{confidence*100:.0f}"
clip_filename = f"weapon_detected_{weapon_name.lower()}_{timestamp}_conf{confidence_str}%.mp4"
clip_path = os.path.join(saved_clips_dir, clip_filename)
What this does:
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
start_frame = int(clip_start * fps)
end_frame = int(clip_end * fps)
cap.set(cv2.CAP_PROP_POS_FRAMES, start_frame)
What this does:
ret, frame = cap.read()
if not ret:
cap.release()
return None
height, width, _ = frame.shape
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(clip_path, fourcc, fps, (width, height))
What this does:
cap.set(cv2.CAP_PROP_POS_FRAMES, start_frame)
frame_count = start_frame
while frame_count <= end_frame:
ret, frame = cap.read()
if not ret:
break
out.write(frame)
frame_count += 1
cap.release()
out.release()
What this does:
The application provides many web endpoints that external applications (like websites) can call.
@app.route('/', methods=['GET'])
def home():
"""API information endpoint."""
return jsonify({
'message': 'Weapon Detection API',
'version': '2.0',
'endpoints': {
'detect': 'POST /detect - Upload image/video for weapon detection',
'health': 'GET /health - Check API health',
'clips': 'GET /clips - List saved video clips'
},
'supported_formats': {
'images': list(config.IMAGE_EXTENSIONS),
'videos': list(config.VIDEO_EXTENSIONS)
},
'detection_classes': config.DETECTION_CLASSES
})
What this does:
@app.route('/', methods=['GET']): When someone visits the main URL with GET request@app.route('/health', methods=['GET'])
@app.route('/status', methods=['GET'])
def health_check():
"""Enhanced health check endpoint matching frontend requirements."""
try:
# Test database connection
db.session.execute(db.text('SELECT 1'))
return jsonify({
'status': 'ok',
'timestamp': datetime.now().isoformat() + 'Z',
'ai_features': config.OLLAMA_ENABLED,
'database': 'connected',
'email_alerts': config.EMAIL_ENABLED,
'model': config.MODEL_PATH
})
except Exception as e:
return jsonify({
'status': 'error',
'timestamp': datetime.now().isoformat() + 'Z',
'error': str(e)
}), 500
What this does:
/health and /status URLs@app.route('/detect', methods=['POST'])
@app.route('/upload', methods=['POST'])
def detect_weapons():
"""Main weapon detection endpoint with comprehensive error handling."""
session_id = str(uuid.uuid4())
start_time = time.time()
try:
print(f"Detection request received (Session: {session_id})")
What this does:
/detect and /upload URLsif 'file' not in request.files:
return jsonify({
'error': True,
'message': 'No file uploaded',
'session_id': session_id
}), 400
What this does:
file = request.files['file']
if file.filename == '':
return jsonify({
'error': True,
'message': 'No file selected',
'session_id': session_id
}), 400
What this does:
if not is_allowed_file(file.filename):
return jsonify({
'error': True,
'message': f'File type not supported. Allowed: {", ".join(config.ALLOWED_EXTENSIONS)}',
'session_id': session_id
}), 400
What this does:
filename = secure_filename(file.filename)
file_extension = filename.rsplit('.', 1)[1].lower()
file_size = request.content_length or 0
# Create detection session in database
session = DetectionSession(
session_id=session_id,
filename=filename,
file_type=file_extension,
file_size=file_size,
upload_timestamp=datetime.utcnow(),
status='processing',
ip_address=request.remote_addr,
user_agent=request.headers.get('User-Agent', 'Unknown')
)
db.session.add(session)
db.session.commit()
What this does:
with tempfile.NamedTemporaryFile(delete=False, suffix=f'.{file_extension}') as temp_file:
file.save(temp_file.name)
temp_filepath = temp_file.name
print(f"File saved temporarily: {temp_filepath}")
What this does:
if is_video_file(filename):
print(f"Processing video file: {filename}")
detections, saved_clips = detect_weapons_in_video(temp_filepath)
processing_type = 'video'
else:
print(f"Processing image file: {filename}")
detections = detect_weapons_in_image(temp_filepath)
saved_clips = []
processing_type = 'image'
What this does:
processing_time = time.time() - start_time
# Update session with results
session.processing_time = processing_time
session.status = 'completed'
db.session.commit()
print(f"Processing completed in {processing_time:.2f} seconds")
What this does:
detection_records = []
for detection in detections:
weapon_detection = WeaponDetection(
session_id=session_id,
weapon_type=detection['name'],
confidence=detection['confidence'],
first_detected_time=detection.get('first_detected_time'),
frame_number=detection.get('frame'),
detection_timestamp=datetime.utcnow()
)
db.session.add(weapon_detection)
detection_records.append(weapon_detection)
print(f"Detection logged to database: {session_id}")
What this does:
if detections:
try:
send_email_alert(detections, saved_clips)
alert_record = AlertHistory(
session_id=session_id,
alert_type='weapon_detection',
recipient_email=config.ALERT_EMAIL,
subject='WEAPON DETECTION ALERT',
body=f'Weapons detected: {[d["name"] for d in detections]}',
sent_at=datetime.utcnow(),
delivery_status='sent'
)
db.session.add(alert_record)
except Exception as e:
print(f"Email sending failed: {e}")
alert_record = AlertHistory(
session_id=session_id,
alert_type='weapon_detection',
recipient_email=config.ALERT_EMAIL,
subject='WEAPON DETECTION ALERT',
body=f'Weapons detected: {[d["name"] for d in detections]}',
sent_at=datetime.utcnow(),
delivery_status='failed',
error_message=str(e)
)
db.session.add(alert_record)
print(f"Email alert logged to database for session: {session_id}")
What this does:
response_data = {
'session_id': session_id,
'processing_time': round(processing_time, 2),
'file_info': {
'filename': filename,
'size': file_size,
'type': processing_type
},
'detections': {
'count': len(detections),
'weapons': []
}
}
for detection in detections:
weapon_info = {
'name': detection['name'],
'confidence': round(detection['confidence'], 4),
'confidence_percent': round(detection['confidence'] * 100, 1)
}
if 'first_detected_time' in detection:
weapon_info['first_detected_time'] = detection['first_detected_time']
if 'frame' in detection:
weapon_info['frame_number'] = detection['frame']
response_data['detections']['weapons'].append(weapon_info)
What this does:
if saved_clips:
response_data['clips'] = {
'count': len(saved_clips),
'files': []
}
for clip in saved_clips:
clip_info = {
'filename': clip['filename'],
'weapon': clip['weapon'],
'confidence': round(clip['confidence'], 4),
'duration': round(clip['duration'], 1),
'start_time': round(clip['start_time'], 1)
}
response_data['clips']['files'].append(clip_info)
What this does:
try:
os.unlink(temp_filepath)
print(f"Temporary file cleaned up: {temp_filepath}")
except Exception as cleanup_error:
print(f"Warning: Could not clean up temporary file: {cleanup_error}")
db.session.commit()
print(f"Detection complete: {len(detections)} weapons found (Session: {session_id})")
return jsonify(response_data)
What this does:
@app.route('/api/stats/dashboard', methods=['GET'])
@app.route('/stats/dashboard', methods=['GET'])
@app.route('/dashboard/stats', methods=['GET'])
def dashboard_stats():
"""Get dashboard statistics."""
try:
# Get recent data (last 30 days)
start_date = datetime.utcnow() - timedelta(days=30)
# Count total sessions and detections
total_sessions = DetectionSession.query.filter(
DetectionSession.upload_timestamp >= start_date
).count()
total_detections = WeaponDetection.query.join(DetectionSession).filter(
DetectionSession.upload_timestamp >= start_date
).count()
What this does:
# Today's stats
today = datetime.utcnow().date()
today_sessions = DetectionSession.query.filter(
db.func.date(DetectionSession.upload_timestamp) == today
).count()
recent_detections = WeaponDetection.query.join(DetectionSession).filter(
DetectionSession.upload_timestamp >= start_date
).all()
What this does:
# Calculate average confidence
if recent_detections:
avg_confidence = sum(float(d.confidence) for d in recent_detections) / len(recent_detections)
else:
avg_confidence = 0
# Calculate average processing time
sessions_with_time = DetectionSession.query.filter(
DetectionSession.upload_timestamp >= start_date,
DetectionSession.processing_time.isnot(None)
).all()
if sessions_with_time:
avg_processing_time = sum(float(s.processing_time) for s in sessions_with_time) / len(sessions_with_time)
else:
avg_processing_time = 0
What this does:
# Recent activity (last 10 sessions)
recent_sessions = DetectionSession.query.order_by(
DetectionSession.upload_timestamp.desc()
).limit(10).all()
recent_activity = []
for session in recent_sessions:
activity = {
'session_id': session.session_id,
'timestamp': session.upload_timestamp.isoformat() + 'Z',
'filename': session.filename,
'detections_count': session.detections.count(),
'status': session.status
}
recent_activity.append(activity)
What this does:
return jsonify({
'total_sessions': total_sessions,
'total_detections': total_detections,
'threats_detected': total_detections, # Alias for compatibility
'false_positives': 2, # Static value - could be made dynamic
'avg_confidence': round(avg_confidence, 2),
'avg_processing_time': round(avg_processing_time),
'scans_today': today_sessions,
'threats_today': today_sessions, # Simplified - assumes all scans find threats
'recent_activity': recent_activity,
'status': 'success',
'timestamp': datetime.now().isoformat()
})
What this does:
@app.route('/api/ai/status', methods=['GET'])
@app.route('/ai/status', methods=['GET'])
@app.route('/status/ai', methods=['GET'])
def ai_status_extended():
"""Get detailed AI service status."""
try:
return jsonify({
'available': config.OLLAMA_ENABLED and ollama_service.is_ollama_available(),
'model': 'SecureVision-AI-v2.1',
'version': '2.1.0',
'last_updated': datetime.now().isoformat() + 'Z',
'health_score': 0.98,
'ollama_enabled': config.OLLAMA_ENABLED,
'model_ready': ollama_service.ensure_model_available() if config.OLLAMA_ENABLED else False
})
except Exception as e:
return jsonify({
'available': False,
'error': str(e),
'timestamp': datetime.now().isoformat()
}), 500
What this does:
@app.route('/api/ai/insights', methods=['GET'])
@app.route('/ai/insights', methods=['GET'])
@app.route('/insights', methods=['GET'])
def ai_insights():
"""Get AI-powered security insights."""
try:
if not config.OLLAMA_ENABLED:
return jsonify({
'insights': [],
'message': 'AI insights disabled in configuration'
})
insights = ollama_service.get_security_insights()
return jsonify({
'insights': insights.get('insights', []),
'summary': insights.get('summary', ''),
'recommendations': insights.get('recommendations', []),
'risk_assessment': insights.get('risk_assessment', {}),
'timestamp': datetime.now().isoformat()
})
except Exception as e:
return jsonify({
'insights': [],
'error': str(e)
}), 500
What this does:
@app.route('/api/ai/explain/<session_id>', methods=['GET'])
@app.route('/ai/explain/<session_id>', methods=['GET'])
@app.route('/explain/<session_id>', methods=['GET'])
def ai_explain(session_id):
"""Get AI explanation for a detection session."""
try:
if not config.OLLAMA_ENABLED:
return jsonify({
'error': 'AI explanation feature is disabled'
}), 503
# Handle timestamp-based session IDs
if 'T' in session_id and ('Z' in session_id or '+' in session_id):
try:
timestamp = datetime.fromisoformat(session_id.replace('Z', '+00:00'))
session = DetectionSession.query.filter(
DetectionSession.upload_timestamp >= timestamp - timedelta(seconds=30),
DetectionSession.upload_timestamp <= timestamp + timedelta(seconds=30)
).first()
except ValueError:
return jsonify({'error': 'Invalid timestamp format'}), 400
else:
# Handle regular session IDs
session = DetectionSession.query.filter_by(session_id=session_id).first()
What this does:
if not session:
return jsonify({'error': 'Session not found'}), 404
detections = WeaponDetection.query.filter_by(session_id=session.session_id).all()
if not detections:
return jsonify({
'session_id': session_id,
'explanation': 'No weapons detected in this session.',
'confidence': 0,
'risk_level': 'low'
})
What this does:
explanation_data = ollama_service.explain_detection(session.session_id)
return jsonify({
'session_id': session_id,
'explanation': explanation_data.get('explanation', 'Analysis not available'),
'confidence': explanation_data.get('confidence', 0),
'risk_level': explanation_data.get('risk_level', 'unknown'),
'factors': explanation_data.get('factors', []),
'recommendations': explanation_data.get('recommendations', []),
'technical_details': explanation_data.get('technical_details', {})
})
What this does:
if __name__ == '__main__':
print("Starting Weapon Detection API with Database...")
# Initialize the application
if not initialize_app():
print("Failed to initialize application. Exiting...")
exit(1)
# Create database tables
if not create_database_tables():
print("Failed to create database tables. Exiting...")
exit(1)
What this does:
if __name__ == '__main__': means this code only runs when the file is executed directly# Check Ollama availability
if config.OLLAMA_ENABLED:
if not ollama_service.is_ollama_available():
print("Warning: Ollama service not available. AI features will be disabled.")
elif not ollama_service.ensure_model_available():
print(f"Warning: Model {config.OLLAMA_MODEL} not available. AI features may not work.")
What this does:
print(f"Starting server on http://{config.HOST}:{config.PORT}")
try:
app.run(
host=config.HOST,
port=config.PORT,
debug=config.DEBUG,
threaded=True
)
except KeyboardInterrupt:
print("\nServer stopped by user")
except Exception as e:
print(f"Server error: {e}")
exit(1)
What this does:
threaded=True allows handling multiple requests simultaneouslyKeyboardInterrupt: User presses Ctrl+CFlask is a web framework that lets you create websites and APIs. When you visit a URL like /health, Flask calls the corresponding function and returns the result.
JSON (JavaScript Object Notation) is a way to structure data that both humans and computers can read. It looks like:
{
"name": "knife",
"confidence": 0.85
}
Not to be confused with detection sessions! A database session is a connection to the database that lets you make multiple changes and then save them all at once with commit().
The try/except blocks catch errors so the program doesn't crash. Instead, it can return a helpful error message.
YOLO (You Only Look Once) is an AI model that can detect objects in images very quickly. It returns bounding boxes around detected objects with confidence scores.
OpenCV is a library for computer vision tasks like reading videos, processing images, and saving video clips.
This application is a sophisticated weapon detection system that:
The code is designed to be robust, scalable, and maintainable, with comprehensive error handling and logging throughout.


